Exam Prep Chapter.6 The Laplace Transform - Complete Test Bank | Differential Equations 12e by William E. Boyce. DOCX document preview.
Elementary Differential Equations, 12e (Boyce)
Chapter 6 The Laplace Transform
1) Consider the following function:
f(t) =
Which of these properties does f satisfy? Select all that apply.
A) f is piecewise continuous on [0, ∞).
B) f is of exponential order.
C) f is continuous on [0, ∞).
D) diverges.
E) The Laplace transform of f exists.
Type: MC Var: 1
2) Consider the following function:
f(t) =
Which of the following statements is true?
A) The Laplace transform of f does not exist because f is not of exponential order.
B) converges.
C) f is continuous on [0, ∞)
D) f is piecewise continuous on [0, ∞), but the Laplace transform of f does not exist.
Type: MC Var: 1
3) Compute the Laplace transform of f:
f(t) =
A) , s > 0
B) , s > 0
C) , s > 0
D) , s > 0
Type: MC Var: 1
4) Compute the Laplace transform of f:
f(t) =
A) +
+ 3
B) +
- 3
C) +
- 3
D) -
+ 3
Type: MC Var: 1
5) The integral converges.
Type: TF Var: 1
6) Which of these statements is true?
A) converges because
≤
, for all t ≥ 1 and
converges.
B) diverges because
≥
, for all t ≥ 1 and
converges.
C) converges because
is of exponential order.
D) converges because
is of exponential order.
Type: MC Var: 1
7) Compute the Laplace transform of f(t) = 4.2.
A) , s > 0
B) 4.2s, s > 0
C) , s ∈ ℝ
D) 4.2s, s ∈ ℝ
Type: MC Var: 1
8) Compute the Laplace transform of f(t) = 6t - 5.
A) +
, s > 3
B) +
, s > -3
C) +
, s > 3
D) +
, s > -3
Type: MC Var: 1
9) Compute the Laplace transform of f(t) = 3 sin(6t) - 4 cos(6t).
A) +
, s > 6
B) +
, s > 6
C) +
, s > 0
D) +
, s > 0
Type: MC Var: 1
10) Compute the Laplace transform of f(t) = t cos(10t).
A)
B)
C)
D)
E)
Type: MC Var: 1
11) Compute the Laplace transform of f(t) = sin(2πt)cos(2πt).
A)
B)
C)
D)
Type: MC Var: 1
12) Compute the Laplace transform of f(t) = 3 + 10.
A) +
, s > 0
B) +
, s > 0
C) +
, s > 0
D) +
, s > 0
Type: MC Var: 1
13) Compute the inverse Laplace transform of F(s) = +
.
A) +
sin(5t)
B) +
cos(
t)
C) +
sin(
t)
D) +
cos(
t)
E) +
cos(5t)
Type: MC Var: 1
14) Compute the inverse Laplace transform of F(s) = .
A) -
cos(5t)
B) t -
sin(5t)
C) -
sin(5t)
D) t -
cos(
t)
E) t -
sin(
t)
Type: MC Var: 1
15) Compute the inverse Laplace transform of F(s) = .
A) sin(81t) + cos(9t)
B) sin(9t) + cos(9t)
C) cos(9t) + sin(9t)
D) cos(81t) + sin(9t)
Type: MC Var: 1
16) Compute the inverse Laplace transform of F(s) = .
A) -
B) +
C) -
D) +
E) +
F) -
Type: MC Var: 1
17) Find the Laplace transform of the solution x(t) of the following initial value problem:
+ 7
+ 3x = 8
, x(0) = 4,
(0) = -1
A)
B)
C)
D)
Type: MC Var: 1
18) Find the Laplace transform of the solution x(t) of the following initial value problem:
+ 3
+ 4
+ 4x = 0, x(0) = 3,
(0) = -1,
(0) = 3
A)
B)
C)
D)
Type: MC Var: 1
19) Consider the following initial value problem:
= -2 + 7
, x(0) = 5
(i) Find the Laplace transform solution x(t) of this initial value problem.
A. +
+
B. 5 + +
C. +
+
D. 5 + +
(ii) Find the inverse Laplace transform of the answer in part (i) to find the solution x(t) of the initial value problem.
(ii) 5 - 2t +
Type: ES Var: 1
20) Find the Laplace transform of the solution x(t) of the following initial value problem:
- 12
+ 32x = 0, x(0) = 1,
(0) = 0
A)
B)
C)
D)
E)
Type: MC Var: 1
21) Compute the Laplace transform of f(t) = tsin(5t).
A)
B)
C)
D)
Type: MC Var: 1
22) Compute the Laplace transform of f(t) = (t + 4)(t).
A) s
B)
C)
D)
E) s
Type: MC Var: 1
23) Compute the Laplace transform of f(t) = (t).
A)
B)
C) +
+
D)
E)
Type: MC Var: 1
24) Consider the function
f(t) =
Express f(t) using unit step functions.
A) t - (t)(t - 3)
B) t + (t)(t - 3)
C) t - (t)(t - 12)
D) t + (t)(t - 12)
Type: MC Var: 1
25) Consider the function
f(t) =
Compute the Laplace transform of f(t).
A) +
B) -
C) -
D) +
Type: MC Var: 1
26) Consider the function
f(t) =
Express f(t) using unit step functions.
A) cos(6πt)(t)
B) cos(6πt)(1 + (t))
C) cos(6πt)((t) - 1)
D) cos(6πt)(1 - (t))
Type: MC Var: 1
27) Consider the function
f(t) =
Compute the Laplace transform of f(t).
A) (1 -
)
B) (1 -
)
C) (1 -
)
D) (
- 1)
E) (
- 1)
Type: MC Var: 1
28) Consider the function
f(t) =
Express f(t) using unit step functions.
A) ((t) -
(t))(t - 8.5)
B) ((t) -
(t))(t - 8.5)
C) ((t) +
(t))(t - 8.5)
D) - ((t) +
(t))(t - 8.5)
Type: MC Var: 1
29) Consider the function
f(t) =
Compute the Laplace transform of f(t).
A) (
- 1) +
B) (
- 1) -
C) (1 -
) +
D) (1 -
) -
Type: MC Var: 1
30) Compute the inverse Laplace transform of F(s) = .
A)
B)
C)
D)
Type: MC Var: 1
31) Consider the function
f(t) = and f(t + 6) = f(t), for all t ≥ 0.
Compute the Laplace transform of f(t).
A)
B)
C)
D)
Type: MC Var: 1
32) Compute the inverse Laplace transform of F(s) = .
A) (t)
cos(4t)
B) (t)
cos(4t)
C) (t)
cos(4t)
D) (t)
sin(4t)
E) (t)
sin(4t)
F) (t)
sin(4t)
Type: MC Var: 1
33) Compute the Laplace transform of f(t) = .
A)
B)
C)
D)
Type: MC Var: 1
34) Compute the Laplace transform of f(t) = cos(4t).
A)
B)
C)
D)
Type: MC Var: 1
35) Compute the inverse Laplace transform of F(s) = .
A)
B)
C)
D)
E)
Type: MC Var: 1
36) Consider the function
f(t) =
Express f(t) using unit step functions.
A) 8 - 8(t)
B) 8 + 8(t)
C) 8 - 8(t)
D) 8 + 8(t)
Type: MC Var: 1
37) Compute the inverse Laplace transform of F(s) = .
A)
B)
C)
D)
Type: MC Var: 1
38) Find the Laplace transform of the solution x(t) of the following initial value problem:
+ 7
+ 5x = f(t), x(0) = -5,
(0) = -5
where
f(t) =
A)
B)
C)
D)
Type: MC Var: 1
39) Find the Laplace transform of the solution x(t) of the following initial value problem
- 3
- 3x =
+
(t)(-2t -
), x(0) = -3,
(0) = -4
A)
B)
C)
D)
E)
F)
Type: MC Var: 1
40) Find the Laplace transform of the solution x(t) of the following initial value problem
= 5x +
(t), x(0) = -3
A) +
B) +
C) - +
D) +
Type: MC Var: 1
41) Find the Laplace transform of the solution x(t) of the following initial value problem
+ 9x =
(t)
A)
B)
C)
D)
Type: MC Var: 1
42) You are given a spring-mass system with a mass of 1 slug, a damping constant 8 lb-sec/foot, and a spring constant of 16 lbs/foot. Suppose the mass is released from rest 1.5 feet below equilibrium, and after 5π seconds the system is given a sharp blow downward which imparts a unit impulse.
(i) Write down a second-order initial value problem whose solution x(t) is the equation of motion for this system.
(ii) Find the Laplace transform X(s) of the solution x(t) of the initial value problem you formulated in part (i).
(iii) Compute the inverse Laplace transform of your function in part (ii).
(ii) X(s) =
(iii) x(t) = 1.5 + 6t
+ (t - 5π)
(t)
Type: ES Var: 1
43) = ________. Here, δ stands for the Dirac delta function.
Type: SA Var: 1
44) = ________. Here, δ stands for the Dirac delta function.
Type: SA Var: 1
45) Compute the Laplace transform of f(t) = δ(t + 3), where δ stands for the Dirac delta function.
Type: SA Var: 1
46) Find the Laplace transform of the solution of x(t) of the following initial value problem
+ 4
+ 4x = -4δ(t - 5), x(0) = 5,
(0) = 0
A)
B)
C)
D)
Type: MC Var: 1
47) Consider the following initial value problem
+ 4
+ 4x = δ(t - 5) - δ(t - 6), x(0) = 3,
(0) = 5
(i) Find the Laplace transform X(s) of the solution x(t) of this initial value problem.
(ii) Compute the inverse Laplace transform of your function in part (i).
(ii) x(t) = 3 + 11t
+
(t)(t - 5)
+
(t)(t - 6)
Type: ES Var: 1
48) Compute *
.
A) (
-
)
B) (
-
)
C) (
-
)
D) (
-
)
Type: MC Var: 1
49) Which of the following are properties of the convolution integral, for all continuous functions f, g, and h? Select all that apply.
A) f * (g * h) = (f * g) * h
B) f * f ≥ 0
C) f * 1 = f
D) f * g = g * f
E) f * (g + h) = f * g + f * h
Type: MC Var: 1
50) Compute the Laplace transform of f(t) = .
A) -
B) +
C) +
D)
E)
F) -
Type: MC Var: 1
51) Consider the following initial value problem describing the motion of a harmonic oscillator in the absence of friction, but subject to an external force.
+ 6x = f(t), x(0) = 1.6,
(0) = 1.4
Find the Laplace transform X(s) of the solution x(t) of this initial value problem. Here, F(s) stands for the Laplace transform of f(t).
A)
B)
C)
D)
Type: MC Var: 1
52) Consider the following initial value problem describing the motion of a harmonic oscillator in the absence of friction, but subject to an external force.
+ 6x = f(t), x(0) = -1.4,
(0) = -1.8
Find the equation of motion x(t). (Hint: You will need to use a convolution integral.)
Type: SA Var: 1
53) Find the function f(t) that satisfies the integral equation
f(t) = -5t +
Type: SA Var: 1
54) Compute * t.
Type: SA Var: 1
55) Use the convolution theorem to compute the inverse Laplace transform of
A) *
B) *
C) *
D) *
E) *
F) *
Type: MC Var: 1
56) Find the function f(t) that satisfies the integral equation
f(t) + = 1
Type: SA Var: 1
57) Use the convolution theorem to compute the inverse Laplace transform of . Select all that apply.
A) 28 sin(4t) * cos(7t)
B) 7 sin(4t) * cos(7t)
C) 4 sin(4t) * cos(7t)
D) 4 sin(7t) * cos(4t)
E) 7 sin(7t) * cos(4t)
Type: MC Var: 1
© (2022) John Wiley & Sons, Inc. All rights reserved. Instructors who are authorized users of this course are permitted to download these materials and use them in connection with the course. Except as permitted herein or by law, no part of these materials should be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise.
Document Information
Connected Book
Complete Test Bank | Differential Equations 12e
By William E. Boyce