Ch.5 Appendix - Combination Models Exam Questions 7e - Forecasting with Forecast X 7e Complete Test Bank by Barry Keating. DOCX document preview.

Ch.5 Appendix - Combination Models Exam Questions 7e

Forecasting and Predictive Analytics with Forecast X, 7e (Keating)

Chapter 5 Appendix - Combination Models

1) Combining individual forecasts into one composite forecast is a way to

A) reduce forecast bias.

B) reduce autocorrelation.

C) enhance forecast optimality.

D) obtain forecast improvement.

E) All of the options are correct.

2) If you are restricted to using only one method to generate forecasts, you risk ignoring information regarding

A) a larger set of explanatory variables.

B) components of a data series emphasized by different models.

C) a larger set of relationships among variables.

D) the role of differing models' assumptions in the forecast process.

E) All of the options are correct.

3) The main purpose of combining forecasts is to reduce

A) bias.

B) mean forecasting bias.

C) mean squared forecasting error.

D) mean absolute forecasting error.

E) All of the options are correct.

4) Which of the following is not a source of forecast bias?

A) Omission of important variables

B) Incorrect model specification, i.e., linear vs. non-linear

C) The preconceived notions of the forecaster

D) Failure to account for serial correlation

E) All of the options are correct.

5) The methodology of combining forecasts is best described as

A) a moving average.

B) a simple average.

C) a geometric average.

D) a weighted average.

E) None of the options are correct.

6) In the optimal composite forecast process, which of the following is not true?

A) Use different models but the same data.

B) Use different models and different variables.

C) Use different data and different models.

D) Use different assumptions and different relationships.

E) All of the options are correct.

7) Which combination of forecasting models is likely to lead to the lowest RMSE of the combined forecast?

A) Trend regression and causal regression

B) Exponential smoothing and Holt's smoothing

C) Causal regression and ARIMA models

D) AR and MA models

E) None of the options are correct.

8) Which of the following is true about the convention, used by some, in which all forecasts are equally weighted in the composite process?

A) Such a weighting usually minimizes forecast error variance.

B) Such a weighting minimizes forecast bias.

C) Such a weighting minimizes RMSE.

D) Such a weighting removes any model bias on the part of the forecaster.

E) All of the options are correct.

9) Under what conditions will forecast combination not lead to increases in forecast accuracy?

A) If all models perform equally well

B) If the RMSE is the same across models

C) If the squared forecast errors are highly correlated across models

D) If all models use the same underlying data and assumptions

E) All of the options are correct.

10) If the squared forecast errors of two forecasting methods were perfectly negatively correlated, a composite forecast could be generated which would have a RMSE of

A) −1.

B) 0.

C) 1.

D) the model that performs the best.

E) None of the options are correct.

11) Which of the following is an advantage to using the adaptive approach to estimate the optimal weights in the forecast combination process?

A) The weights change from period to period.

B) A test of the combined forecast model bias can be performed.

C) The covariance between error variances is utilized.

D) Weights are chosen so as to maximize regression error variance.

E) All of the options are correct.

12) Which of the following is an advantage to using the regression approach to estimating the optimal weights in the forecast combination process?

A) The weights change from period to period.

B) A test of the combined forecast model bias can be performed.

C) The covariance between error variances is not utilized.

D) Weights are chosen so as to minimize absolute regression deviation.

E) All of the options are correct.

13) When using multiple regression to select the optimal weights for use in the composite forecast process, one can test whether forecast model 2 adds any explanatory power to what is already present in forecast model 1 using which distribution?

A) Chi-square

B) Standard normal

C) t distribution

D) F distribution

E) None of the options are correct.

14) Using the multiple regression approach to selecting optimal forecast combination weights, the null hypothesis of no composite model bias is

A) H0: s2 = 0.

B) H0: β1 = 0.

C) H0: β2 = 0.

D) H0: R2 = 0.

E) None of the options are correct.

15) Combination Forecast

Consider the ForecastX™ Audit Trail printouts below. They represent and analysis of a combination model for Gap sales using a Winters model and a multiple-regression model. The results of the Winters model are the series Gapsales_WFCST. The results for the multiple-regression model are the series Gapsales_RFCST.

Regression #1

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Gap Sales ($000)

Dependent

−6,467.84

10,332.93

Gapsales_RFCST

Yes

0.11

0.04

Gapsales_WFCST

Yes

0.91

0.04

Series Description

T-test 

F-test

Elasticity

Overall

F-test

Gap Sales ($000)

−0.63

0.39

5,005.67

Gapsales_RFCST

2.60

6.75

0.11

Gapsales_WFCST

22.58

510.08

0.90

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

1,361.38

 

Durbin Watson

1.75

 

BIC

1,363.41

 

Mean

804,816.13

 

Mean Absolute Percentage Error (MAPE)

5.21

%

Standard Deviation

628,227.16

 

Sum Squared Error (SSE)

114,310,689,710.20

 

Max

3,029,900.00

 

R-Square

99.47

%

Min

105,715.00

 

Adjusted R-Square

99.45

%

Range

2,924,185.00

 

Mean Absolute Error

34,833.08

 

Ljung-Box

0.76

 

Mean Error

0.00

 

 

 

 

Mean Square Error

2,041,262,316.25

 

 

 

 

Root Mean Square Error

45,180.33

 

 

 

 

Theil

0.27

 

 

 

 

Regression #2

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Gap Sales ($000)

Dependent

0.00

0.00

Gapsales_RFCST

Yes

0.1018

0.04

Gapsales_WFCST

Yes

0.9112

0.04

Series Description

T-test 

F-test

Elasticity

Overall

F-test

Gap Sales ($000)

0.00

0.00

5,062.49

Gapsales_RFCST

2.54

6.47

0.00

Gapsales_WFCST

22.70

515.50

0.91

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

1,361.80

 

Durbin Watson

1.72

 

BIC

1,363.82

 

Mean

804,816.13

 

Mean Absolute Percentage Error (MAPE)

5.08

%

Standard Deviation

628,227.16

 

Sum Squared Error (SSE)

115,155,739,746

 

Max

3,029,900.00

 

R-Square

99.47

%

Min

105,715.00

 

Adjusted R-Square

99.45

%

Range

2,924,185.00

 

Mean Absolute Error

34,538.72

 

Ljung-Box

0.94

 

Mean Error

−2,333.11

 

 

 

 

Mean Square Error

2,056,352,495.47

 

 

 

 

Root Mean Square Error

45,347.02

 

 

 

 

Theil

0.27

 

 

 

 

Forecast for 1999

Date

Gap Sales ($000)

Combined Forecast

Mar-99

2277700

2,160,500.79

Jun-99

2453300

2,359,986.28

Sep-99

3045386

3,111,234.20

Dec-99

3858939

3,788,377.03

In the preparation of a combination forecast, Regression #1 above

A) is used to determine if there is no systematic bias in the two component models.

B) is used to determine if the two component models will contribute to the combined model.

C) is used to determine if each component model has an adequate t-statistic.

D) is used to determine if the Durbin Watson is close to 2.

16) Combination Forecast

Consider the ForecastX™ Audit Trail printouts below. They represent and analysis of a combination model for Gap sales using a Winters model and a multiple-regression model. The results of the Winters model are the series Gapsales_WFCST. The results for the multiple-regression model are the series Gapsales_RFCST.

Regression #1

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Gap Sales ($000)

Dependent

−6,467.84

10,332.93

Gapsales_RFCST

Yes

0.11

0.04

Gapsales_WFCST

Yes

0.91

0.04

Series Description

T-test 

F-test

Elasticity

Overall

F-test

Gap Sales ($000)

−0.63

0.39

5,005.67

Gapsales_RFCST

2.60

6.75

0.11

Gapsales_WFCST

22.58

510.08

0.90

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

1,361.38

 

Durbin Watson

1.75

 

BIC

1,363.41

 

Mean

804,816.13

 

Mean Absolute Percentage Error (MAPE)

5.21

%

Standard Deviation

628,227.16

 

Sum Squared Error (SSE)

114,310,689,710.20

 

Max

3,029,900.00

 

R-Square

99.47

%

Min

105,715.00

 

Adjusted R-Square

99.45

%

Range

2,924,185.00

 

Mean Absolute Error

34,833.08

 

Ljung-Box

0.76

 

Mean Error

0.00

 

 

 

 

Mean Square Error

2,041,262,316.25

 

 

 

 

Root Mean Square Error

45,180.33

 

 

 

 

Theil

0.27

 

 

 

 

Regression #2

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Gap Sales ($000)

Dependent

0.00

0.00

Gapsales_RFCST

Yes

0.1018

0.04

Gapsales_WFCST

Yes

0.9112

0.04

Series Description

T-test 

F-test

Elasticity

Overall

F-test

Gap Sales ($000)

0.00

0.00

5,062.49

Gapsales_RFCST

2.54

6.47

0.00

Gapsales_WFCST

22.70

515.50

0.91

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

1,361.80

 

Durbin Watson

1.72

 

BIC

1,363.82

 

Mean

804,816.13

 

Mean Absolute Percentage Error (MAPE)

5.08

%

Standard Deviation

628,227.16

 

Sum Squared Error (SSE)

115,155,739,746

 

Max

3,029,900.00

 

R-Square

99.47

%

Min

105,715.00

 

Adjusted R-Square

99.45

%

Range

2,924,185.00

 

Mean Absolute Error

34,538.72

 

Ljung-Box

0.94

 

Mean Error

−2,333.11

 

 

 

 

Mean Square Error

2,056,352,495.47

 

 

 

 

Root Mean Square Error

45,347.02

 

 

 

 

Theil

0.27

 

 

 

 

Forecast for 1999

Date

Gap Sales ($000)

Combined Forecast

Mar-99

2277700

2,160,500.79

Jun-99

2453300

2,359,986.28

Sep-99

3045386

3,111,234.20

Dec-99

3858939

3,788,377.03

Regression #2 above is also used in the process of determining a combination model. Regression #2 above

A) can only be used if no bias exists in either candidate model.

B) is used to calculate the forecasts for the combined model.

C) is useful in determining the R2 of the combined model.

D) should have coefficients roughly summing to one.

E) All of the options are correct.

17) Combination Forecast

Consider the ForecastX™ Audit Trail printouts below. They represent and analysis of a combination model for Gap sales using a Winters model and a multiple-regression model. The results of the Winters model are the series Gapsales_WFCST. The results for the multiple-regression model are the series Gapsales_RFCST.

Regression #1

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Gap Sales ($000)

Dependent

−6,467.84

10,332.93

Gapsales_RFCST

Yes

0.11

0.04

Gapsales_WFCST

Yes

0.91

0.04

Series Description

T-test 

F-test

Elasticity

Overall

F-test

Gap Sales ($000)

−0.63

0.39

5,005.67

Gapsales_RFCST

2.60

6.75

0.11

Gapsales_WFCST

22.58

510.08

0.90

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

1,361.38

 

Durbin Watson

1.75

 

BIC

1,363.41

 

Mean

804,816.13

 

Mean Absolute Percentage Error (MAPE)

5.21

%

Standard Deviation

628,227.16

 

Sum Squared Error (SSE)

114,310,689,710.20

 

Max

3,029,900.00

 

R-Square

99.47

%

Min

105,715.00

 

Adjusted R-Square

99.45

%

Range

2,924,185.00

 

Mean Absolute Error

34,833.08

 

Ljung-Box

0.76

 

Mean Error

0.00

 

 

 

 

Mean Square Error

2,041,262,316.25

 

 

 

 

Root Mean Square Error

45,180.33

 

 

 

 

Theil

0.27

 

 

 

 

Regression #2

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Gap Sales ($000)

Dependent

0.00

0.00

Gapsales_RFCST

Yes

0.1018

0.04

Gapsales_WFCST

Yes

0.9112

0.04

Series Description

T-test 

F-test

Elasticity

Overall

F-test

Gap Sales ($000)

0.00

0.00

5,062.49

Gapsales_RFCST

2.54

6.47

0.00

Gapsales_WFCST

22.70

515.50

0.91

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

1,361.80

 

Durbin Watson

1.72

 

BIC

1,363.82

 

Mean

804,816.13

 

Mean Absolute Percentage Error (MAPE)

5.08

%

Standard Deviation

628,227.16

 

Sum Squared Error (SSE)

115,155,739,746

 

Max

3,029,900.00

 

R-Square

99.47

%

Min

105,715.00

 

Adjusted R-Square

99.45

%

Range

2,924,185.00

 

Mean Absolute Error

34,538.72

 

Ljung-Box

0.94

 

Mean Error

−2,333.11

 

 

 

 

Mean Square Error

2,056,352,495.47

 

 

 

 

Root Mean Square Error

45,347.02

 

 

 

 

Theil

0.27

 

 

 

 

Forecast for 1999

Date

Gap Sales ($000)

Combined Forecast

Mar-99

2277700

2,160,500.79

Jun-99

2453300

2,359,986.28

Sep-99

3045386

3,111,234.20

Dec-99

3858939

3,788,377.03

The forecast for 1999 Gap Sales appearing above

A) was the result of an equal weight placed on each model.

B) was the result of applying the optimal weights to the two component forecasts.

C) was the result of Regression #1.

D) was not the result of using an optimal set of weights for the component models.

E) both "was the result of an equal weight placed on each model." and "was the result of applying the optimal weights to the two component forecasts." are correct.

18) Combination Forecast

Consider the ForecastX™ Audit Trail printouts below. They represent and analysis of a combination model for Gap sales using a Winters model and a multiple-regression model. The results of the Winters model are the series Gapsales_WFCST. The results for the multiple-regression model are the series Gapsales_RFCST.

Regression #1

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Gap Sales ($000)

Dependent

−6,467.84

10,332.93

Gapsales_RFCST

Yes

0.11

0.04

Gapsales_WFCST

Yes

0.91

0.04

Series Description

T-test 

F-test

Elasticity

Overall

F-test

Gap Sales ($000)

−0.63

0.39

5,005.67

Gapsales_RFCST

2.60

6.75

0.11

Gapsales_WFCST

22.58

510.08

0.90

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

1,361.38

 

Durbin Watson

1.75

 

BIC

1,363.41

 

Mean

804,816.13

 

Mean Absolute Percentage Error (MAPE)

5.21

%

Standard Deviation

628,227.16

 

Sum Squared Error (SSE)

114,310,689,710.20

 

Max

3,029,900.00

 

R-Square

99.47

%

Min

105,715.00

 

Adjusted R-Square

99.45

%

Range

2,924,185.00

 

Mean Absolute Error

34,833.08

 

Ljung-Box

0.76

 

Mean Error

0.00

 

 

 

 

Mean Square Error

2,041,262,316.25

 

 

 

 

Root Mean Square Error

45,180.33

 

 

 

 

Theil

0.27

 

 

 

 

Regression #2

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Gap Sales ($000)

Dependent

0.00

0.00

Gapsales_RFCST

Yes

0.1018

0.04

Gapsales_WFCST

Yes

0.9112

0.04

Series Description

T-test 

F-test

Elasticity

Overall

F-test

Gap Sales ($000)

0.00

0.00

5,062.49

Gapsales_RFCST

2.54

6.47

0.00

Gapsales_WFCST

22.70

515.50

0.91

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

1,361.80

 

Durbin Watson

1.72

 

BIC

1,363.82

 

Mean

804,816.13

 

Mean Absolute Percentage Error (MAPE)

5.08

%

Standard Deviation

628,227.16

 

Sum Squared Error (SSE)

115,155,739,746

 

Max

3,029,900.00

 

R-Square

99.47

%

Min

105,715.00

 

Adjusted R-Square

99.45

%

Range

2,924,185.00

 

Mean Absolute Error

34,538.72

 

Ljung-Box

0.94

 

Mean Error

−2,333.11

 

 

 

 

Mean Square Error

2,056,352,495.47

 

 

 

 

Root Mean Square Error

45,347.02

 

 

 

 

Theil

0.27

 

 

 

 

Forecast for 1999

Date

Gap Sales ($000)

Combined Forecast

Mar-99

2277700

2,160,500.79

Jun-99

2453300

2,359,986.28

Sep-99

3045386

3,111,234.20

Dec-99

3858939

3,788,377.03

The optimal weights used in the 1999 forecast above

A) were about 0.51 for the regression model and 0.90 for the Winters model.

B) were about 0.1 for the regression model and 0.90 for the Winters model.

C) were about 0.0 for the regression model and 1.00 for the Winters model.

D) were about 1.00 for the regression model and 0.0 for the Winters model.

19) Combination Forecast

Consider the ForecastX™ Audit Trail printouts below. They represent and analysis of a combination model for Gap sales using a Winters model and a multiple-regression model. The results of the Winters model are the series Gapsales_WFCST. The results for the multiple-regression model are the series Gapsales_RFCST.

Regression #1

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Gap Sales ($000)

Dependent

−6,467.84

10,332.93

Gapsales_RFCST

Yes

0.11

0.04

Gapsales_WFCST

Yes

0.91

0.04

Series Description

T-test 

F-test

Elasticity

Overall

F-test

Gap Sales ($000)

−0.63

0.39

5,005.67

Gapsales_RFCST

2.60

6.75

0.11

Gapsales_WFCST

22.58

510.08

0.90

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

1,361.38

 

Durbin Watson

1.75

 

BIC

1,363.41

 

Mean

804,816.13

 

Mean Absolute Percentage Error (MAPE)

5.21

%

Standard Deviation

628,227.16

 

Sum Squared Error (SSE)

114,310,689,710.20

 

Max

3,029,900.00

 

R-Square

99.47

%

Min

105,715.00

 

Adjusted R-Square

99.45

%

Range

2,924,185.00

 

Mean Absolute Error

34,833.08

 

Ljung-Box

0.76

 

Mean Error

0.00

 

 

 

 

Mean Square Error

2,041,262,316.25

 

 

 

 

Root Mean Square Error

45,180.33

 

 

 

 

Theil

0.27

 

 

 

 

Regression #2

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Gap Sales ($000)

Dependent

0.00

0.00

Gapsales_RFCST

Yes

0.1018

0.04

Gapsales_WFCST

Yes

0.9112

0.04

Series Description

T-test 

F-test

Elasticity

Overall

F-test

Gap Sales ($000)

0.00

0.00

5,062.49

Gapsales_RFCST

2.54

6.47

0.00

Gapsales_WFCST

22.70

515.50

0.91

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

1,361.80

 

Durbin Watson

1.72

 

BIC

1,363.82

 

Mean

804,816.13

 

Mean Absolute Percentage Error (MAPE)

5.08

%

Standard Deviation

628,227.16

 

Sum Squared Error (SSE)

115,155,739,746

 

Max

3,029,900.00

 

R-Square

99.47

%

Min

105,715.00

 

Adjusted R-Square

99.45

%

Range

2,924,185.00

 

Mean Absolute Error

34,538.72

 

Ljung-Box

0.94

 

Mean Error

−2,333.11

 

 

 

 

Mean Square Error

2,056,352,495.47

 

 

 

 

Root Mean Square Error

45,347.02

 

 

 

 

Theil

0.27

 

 

 

 

Forecast for 1999

Date

Gap Sales ($000)

Combined Forecast

Mar-99

2277700

2,160,500.79

Jun-99

2453300

2,359,986.28

Sep-99

3045386

3,111,234.20

Dec-99

3858939

3,788,377.03

The constant term in Regression #2

A) does not exist.

B) is statistically insignificant.

C) equals 0.00.

D) determines the optimal weights for the combined model.

20) Combined Forecast #2

Consider the two regressions below that were used to determine the appropriateness of a combined model of Private Housing Starts. RFCST is the regression model of Private Housing Starts (PHS). WFCST is the Winters' exponential smoothing model of Private Housing Starts.

Regression #1

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

PHS

Dependent

−44.30

26.96

RFCST

Yes

0.29

0.11

WFCST

Yes

0.88

0.05

Series Description

T-test 

F-test

Elasticity

Overall

F-test

PHS

−1.64

2.70

226.75

RFCST

2.71

7.35

0.29

WFCST

18.71

350.24

0.88

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

281.49

 

Durbin Watson

2.21

 

BIC

283.05

 

Mean

271.85

 

Mean Absolute Percentage Error (MAPE)

4.07

%

Standard Deviation

51.83

 

Sum Squared Error (SSE)

6.020.44

 

Max

360.40

 

R-Square

93.41

%

Min

146.70

 

Adjusted R-Square

93.00

%

Range

213.70

 

Mean Absolute Error

10.27

 

Ljung-Box

0.54

 

Mean Error

0.00

 

 

 

 

Mean Square Error

172.01

 

 

 

 

Root Mean Square Error

13.12

 

 

 

 

Theil

0.22

 

 

 

 

Regression #2

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

PHS

Dependent

0.00

0.00

RFCST

Yes

0.13

0.05

WFCST

Yes

0.88

0.05

Series Description

T-test 

F-test

Elasticity

Overall

F-test

PHS

0.00

0.00

214.35

RFCST

2.70

7.29

0.00

WFCST

18.18

330.49

0.88

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

284.33

 

Durbin Watson

1.99

 

BIC

285.88

 

Mean

271.85

 

Mean Absolute Percentage Error (MAPE)

4.34

%

Standard Deviation

51.83

 

Sum Squared Error (SSE)

6,528.68

 

Max

360.40

 

R-Square

92.85

%

Min

146.70

 

Adjusted R-Square

92.41

%

Range

213.70

 

Mean Absolute Error

10.91

 

Ljung-Box

0.00

 

Mean Error

−0.33

 

 

 

 

Mean Square Error

186.53

 

 

 

 

Root Mean Square Error

13.66

 

 

 

 

Theil

0.23

 

 

 

 

Regression #1 above is used

A) to determine if the component models are sufficiently unbiased.

B) to determine if both component models are statistically significant.

C) to determine if the component models suffer from autocorrelation.

D) to determine how to weight the component models.

21) Combined Forecast #2

Consider the two regressions below that were used to determine the appropriateness of a combined model of Private Housing Starts. RFCST is the regression model of Private Housing Starts (PHS). WFCST is the Winters' exponential smoothing model of Private Housing Starts.

Regression #1

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

PHS

Dependent

−44.30

26.96

RFCST

Yes

0.29

0.11

WFCST

Yes

0.88

0.05

Series Description

T-test 

F-test

Elasticity

Overall

F-test

PHS

−1.64

2.70

226.75

RFCST

2.71

7.35

0.29

WFCST

18.71

350.24

0.88

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

281.49

 

Durbin Watson

2.21

 

BIC

283.05

 

Mean

271.85

 

Mean Absolute Percentage Error (MAPE)

4.07

%

Standard Deviation

51.83

 

Sum Squared Error (SSE)

6.020.44

 

Max

360.40

 

R-Square

93.41

%

Min

146.70

 

Adjusted R-Square

93.00

%

Range

213.70

 

Mean Absolute Error

10.27

 

Ljung-Box

0.54

 

Mean Error

0.00

 

 

 

 

Mean Square Error

172.01

 

 

 

 

Root Mean Square Error

13.12

 

 

 

 

Theil

0.22

 

 

 

 

Regression #2

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

PHS

Dependent

0.00

0.00

RFCST

Yes

0.13

0.05

WFCST

Yes

0.88

0.05

Series Description

T-test 

F-test

Elasticity

Overall

F-test

PHS

0.00

0.00

214.35

RFCST

2.70

7.29

0.00

WFCST

18.18

330.49

0.88

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

284.33

 

Durbin Watson

1.99

 

BIC

285.88

 

Mean

271.85

 

Mean Absolute Percentage Error (MAPE)

4.34

%

Standard Deviation

51.83

 

Sum Squared Error (SSE)

6,528.68

 

Max

360.40

 

R-Square

92.85

%

Min

146.70

 

Adjusted R-Square

92.41

%

Range

213.70

 

Mean Absolute Error

10.91

 

Ljung-Box

0.00

 

Mean Error

−0.33

 

 

 

 

Mean Square Error

186.53

 

 

 

 

Root Mean Square Error

13.66

 

 

 

 

Theil

0.23

 

 

 

 

Regression #2 above is used

A) to ensure that the combined model is unbiased.

B) to calculate the weights of the combined model.

C) to eliminate autocorrelation in the combined model.

D) to determine the correlation between the component models.

22) Combined Forecast #2

Consider the two regressions below that were used to determine the appropriateness of a combined model of Private Housing Starts. RFCST is the regression model of Private Housing Starts (PHS). WFCST is the Winters' exponential smoothing model of Private Housing Starts.

Regression #1

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

PHS

Dependent

−44.30

26.96

RFCST

Yes

0.29

0.11

WFCST

Yes

0.88

0.05

Series Description

T-test 

F-test

Elasticity

Overall

F-test

PHS

−1.64

2.70

226.75

RFCST

2.71

7.35

0.29

WFCST

18.71

350.24

0.88

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

281.49

 

Durbin Watson

2.21

 

BIC

283.05

 

Mean

271.85

 

Mean Absolute Percentage Error (MAPE)

4.07

%

Standard Deviation

51.83

 

Sum Squared Error (SSE)

6.020.44

 

Max

360.40

 

R-Square

93.41

%

Min

146.70

 

Adjusted R-Square

93.00

%

Range

213.70

 

Mean Absolute Error

10.27

 

Ljung-Box

0.54

 

Mean Error

0.00

 

 

 

 

Mean Square Error

172.01

 

 

 

 

Root Mean Square Error

13.12

 

 

 

 

Theil

0.22

 

 

 

 

Regression #2

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

PHS

Dependent

0.00

0.00

RFCST

Yes

0.13

0.05

WFCST

Yes

0.88

0.05

Series Description

T-test 

F-test

Elasticity

Overall

F-test

PHS

0.00

0.00

214.35

RFCST

2.70

7.29

0.00

WFCST

18.18

330.49

0.88

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

284.33

 

Durbin Watson

1.99

 

BIC

285.88

 

Mean

271.85

 

Mean Absolute Percentage Error (MAPE)

4.34

%

Standard Deviation

51.83

 

Sum Squared Error (SSE)

6,528.68

 

Max

360.40

 

R-Square

92.85

%

Min

146.70

 

Adjusted R-Square

92.41

%

Range

213.70

 

Mean Absolute Error

10.91

 

Ljung-Box

0.00

 

Mean Error

−0.33

 

 

 

 

Mean Square Error

186.53

 

 

 

 

Root Mean Square Error

13.66

 

 

 

 

Theil

0.23

 

 

 

 

The two regressions above show

A) that there would be little advantage to combining these two models.

B) that the models should be weighted approximately 0.13 for the regression model and 0.88 for the Winters' model.

C) that the appropriate weighting is about 0.88 for the regression model and about 0.13 for the Winters' model.

D) that an even weighting (i.e., 0.50 for each model) would be appropriate.

23) Combined Forecast #2

Consider the two regressions below that were used to determine the appropriateness of a combined model of Private Housing Starts. RFCST is the regression model of Private Housing Starts (PHS). WFCST is the Winters' exponential smoothing model of Private Housing Starts.

Regression #1

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

PHS

Dependent

−44.30

26.96

RFCST

Yes

0.29

0.11

WFCST

Yes

0.88

0.05

Series Description

T-test 

F-test

Elasticity

Overall

F-test

PHS

−1.64

2.70

226.75

RFCST

2.71

7.35

0.29

WFCST

18.71

350.24

0.88

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

281.49

 

Durbin Watson

2.21

 

BIC

283.05

 

Mean

271.85

 

Mean Absolute Percentage Error (MAPE)

4.07

%

Standard Deviation

51.83

 

Sum Squared Error (SSE)

6.020.44

 

Max

360.40

 

R-Square

93.41

%

Min

146.70

 

Adjusted R-Square

93.00

%

Range

213.70

 

Mean Absolute Error

10.27

 

Ljung-Box

0.54

 

Mean Error

0.00

 

 

 

 

Mean Square Error

172.01

 

 

 

 

Root Mean Square Error

13.12

 

 

 

 

Theil

0.22

 

 

 

 

Regression #2

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

PHS

Dependent

0.00

0.00

RFCST

Yes

0.13

0.05

WFCST

Yes

0.88

0.05

Series Description

T-test 

F-test

Elasticity

Overall

F-test

PHS

0.00

0.00

214.35

RFCST

2.70

7.29

0.00

WFCST

18.18

330.49

0.88

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

284.33

 

Durbin Watson

1.99

 

BIC

285.88

 

Mean

271.85

 

Mean Absolute Percentage Error (MAPE)

4.34

%

Standard Deviation

51.83

 

Sum Squared Error (SSE)

6,528.68

 

Max

360.40

 

R-Square

92.85

%

Min

146.70

 

Adjusted R-Square

92.41

%

Range

213.70

 

Mean Absolute Error

10.91

 

Ljung-Box

0.00

 

Mean Error

−0.33

 

 

 

 

Mean Square Error

186.53

 

 

 

 

Root Mean Square Error

13.66

 

 

 

 

Theil

0.23

 

 

 

 

The two regressions above

A) show significant bias in one or more of the two models.

B) show little bias in either model.

C) fail to determine if there is any bias in either of the models.

D) None of the options are correct.

24) Combined Forecast #3

Consider the data below that includes a time series of shipments of a commercial product. Two separate forecasts models were estimated for this data; one is a Holt-Winter's model labeled "winters" and the other is a sales-force composite judgmental model labeled "purchaser's survey."

Date

Shipments

Winters

Purchaser's Survey

Apr-2002

13,838.00

12,867.74

13,920.32

May-2002

15,137.00

15,020.45

15,052.82

Jun-2002

23,713.00

20,396.51

26,207.69

Jul-2002

17,141.00

13,705.67

17,237.59

Aug-2002

7,107.00

7,973.83

7,687.23

Sep-2002

9,225.00

10,588.46

9,788.06

Oct-2002

10,950.00

13,110.02

7,889.46

Nov-2002

14,752.00

14,920.97

14,679.10

Dec-2002

18,871.00

21,429.51

17,644.48

Jan-2003

11,329.00

14,836.31

10,436.45

Feb-2003

6,555.00

7,561.41

6,304.89

Mar-2003

9,335.00

9,956.32

9,354.44

Apr-2003

10,845.00

12,148.06

11,759.15

May-2003

15,185.00

14,665.88

14,971.57

Jun-2003

21,056.00

20,200.90

24,644.20

Jul-2003

13,509.00

13,344.02

14,224.17

Aug-2003

9,729.00

7,090.84

9,194.77

Sep-2003

13,454.00

9,606.14

12,141.25

Oct-2003

13,426.00

11,533.95

11,971.93

Nov-2003

17,792.00

14,714.76

17,654.14

Dec-2003

19,026.00

20,342.11

15,580.19

Jan-2004

9,432.00

13,296.42

9,961.98

Feb-2004

6,356.00

8,010.78

7,368.55

Mar-2004

12,893.00

10,944.75

11,286.25

Apr-2004

19,379.00

12,126.72

18,915.33

May-2004

14,542.00

15,732.13

14,056.06

Jun-2004

18,043.00

19,676.43

20,699.38

Jul-2004

10,803.00

11,747.86

12,892.97

Regression #1

Audit Trail — ANOVA Table (Multiple Regression Selected)

Source of Variation

SS

df

MS

SEE

Regression

 

502,795,011.49

 

 

2

 

 

251,397,505.75

 

 

 

 

Error

 

44,550,454.61

 

 

25

 

 

1,782,018.18

 

 

1,334.92

 

Total

 

547,345,466.11

 

 

27

 

 

 

 

 

 

 

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Shipments

Dependent

875.23

890.48

Winters

Yes

0.22

0.11

Purchaser's Survey

Yes

0.72

0.09

Series Description

T-test 

P-value

F-test

Elasticity

Overall

F-test

Shipments

0.98

0.34

0.97

141.07

Winters

2.09

0.05

4.35

0.22

Purchaser's Survey

8.25

0.00

68.11

0.72

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

481.30

 

Durbin Watson(1)

1.48

 

BIC

482.63

 

Mean

13,693.68

 

Mean Absolute Percentage Error (MAPE)

8.45

%

Max

23,713.00

 

R-Square

91.86

%

Min

6,356.00

 

Adjusted R-Square

91.21

%

Sum Squared Deviation

547,345,466.11

 

Root Mean Square Error

1,261.38

 

Range

17,357.00

 

Theil

0.27

 

Ljung-Box

9.64

 

 

 

 

 

 

 

Method Statistics

Value

 

 

 

 

Method Selected

Multiple Regression

 

 

 

 

Regression #2

Audit Trail — ANOVA Table (Multiple Regression Selected)

Source of Variation

SS

df

MS

SEE

Regression

 

501,073,510.18

 

 

2

 

 

250,536,755.09

 

 

 

 

Error

 

46,271,955.92

 

 

26

 

 

1,779,690.61

 

 

1,334.05

 

Total

 

547,345,466.11

 

 

28

 

 

 

 

 

 

 

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Shipments

Dependent

0.00

0.00

Winters

Yes

0.28

0.09

Purchaser's Survey

Yes

0.72

0.09

Series Description

T-test 

P-value

F-test

Elasticity

Overall

F-test

Shipments

0.00

0.00

0.00

140.78

Winters

3.09

0.00

9.54

0.27

Purchaser's Survey

8.31

0.00

69.09

0.72

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

482.36

 

Durbin Watson(1)

1.44

 

BIC

483.69

 

Mean

13,693.68

 

Mean Absolute Percentage Error (MAPE)

7.89

%

Max

23,713.00

 

R-Square

91.55

%

Min

6,356.00

 

Adjusted R-Square

90.87

%

Sum Squared Deviation

547,345,466.11

 

Root Mean Square Error

1,285.52

 

Range

17,357.00

 

Theil

0.28

 

Ljung-Box

11.58

 

 

 

 

 

 

 

Method Statistics

Value

 

 

 

 

Method Selected

Multiple Regression

 

 

 

 

Both models were used in a regression model labeled "regression #1" above to examine the portfolio of forecasts. Is there evidence of bias in the combined forecast?

A) Yes.

B) No.

C) This is the wrong regression model to use for bias determination.

D) Bias must be measured using correlation analysis.

25) Combined Forecast #3

Consider the data below that includes a time series of shipments of a commercial product. Two separate forecasts models were estimated for this data; one is a Holt-Winter's model labeled "winters" and the other is a sales-force composite judgmental model labeled "purchaser's survey."

Date

Shipments

Winters

Purchaser's Survey

Apr-2002

13,838.00

12,867.74

13,920.32

May-2002

15,137.00

15,020.45

15,052.82

Jun-2002

23,713.00

20,396.51

26,207.69

Jul-2002

17,141.00

13,705.67

17,237.59

Aug-2002

7,107.00

7,973.83

7,687.23

Sep-2002

9,225.00

10,588.46

9,788.06

Oct-2002

10,950.00

13,110.02

7,889.46

Nov-2002

14,752.00

14,920.97

14,679.10

Dec-2002

18,871.00

21,429.51

17,644.48

Jan-2003

11,329.00

14,836.31

10,436.45

Feb-2003

6,555.00

7,561.41

6,304.89

Mar-2003

9,335.00

9,956.32

9,354.44

Apr-2003

10,845.00

12,148.06

11,759.15

May-2003

15,185.00

14,665.88

14,971.57

Jun-2003

21,056.00

20,200.90

24,644.20

Jul-2003

13,509.00

13,344.02

14,224.17

Aug-2003

9,729.00

7,090.84

9,194.77

Sep-2003

13,454.00

9,606.14

12,141.25

Oct-2003

13,426.00

11,533.95

11,971.93

Nov-2003

17,792.00

14,714.76

17,654.14

Dec-2003

19,026.00

20,342.11

15,580.19

Jan-2004

9,432.00

13,296.42

9,961.98

Feb-2004

6,356.00

8,010.78

7,368.55

Mar-2004

12,893.00

10,944.75

11,286.25

Apr-2004

19,379.00

12,126.72

18,915.33

May-2004

14,542.00

15,732.13

14,056.06

Jun-2004

18,043.00

19,676.43

20,699.38

Jul-2004

10,803.00

11,747.86

12,892.97

Regression #1

Audit Trail — ANOVA Table (Multiple Regression Selected)

Source of Variation

SS

df

MS

SEE

Regression

 

502,795,011.49

 

 

2

 

 

251,397,505.75

 

 

 

 

Error

 

44,550,454.61

 

 

25

 

 

1,782,018.18

 

 

1,334.92

 

Total

 

547,345,466.11

 

 

27

 

 

 

 

 

 

 

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Shipments

Dependent

875.23

890.48

Winters

Yes

0.22

0.11

Purchaser's Survey

Yes

0.72

0.09

Series Description

T-test 

P-value

F-test

Elasticity

Overall

F-test

Shipments

0.98

0.34

0.97

141.07

Winters

2.09

0.05

4.35

0.22

Purchaser's Survey

8.25

0.00

68.11

0.72

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

481.30

 

Durbin Watson(1)

1.48

 

BIC

482.63

 

Mean

13,693.68

 

Mean Absolute Percentage Error (MAPE)

8.45

%

Max

23,713.00

 

R-Square

91.86

%

Min

6,356.00

 

Adjusted R-Square

91.21

%

Sum Squared Deviation

547,345,466.11

 

Root Mean Square Error

1,261.38

 

Range

17,357.00

 

Theil

0.27

 

Ljung-Box

9.64

 

 

 

 

 

 

 

Method Statistics

Value

 

 

 

 

Method Selected

Multiple Regression

 

 

 

 

Regression #2

Audit Trail — ANOVA Table (Multiple Regression Selected)

Source of Variation

SS

df

MS

SEE

Regression

 

501,073,510.18

 

 

2

 

 

250,536,755.09

 

 

 

 

Error

 

46,271,955.92

 

 

26

 

 

1,779,690.61

 

 

1,334.05

 

Total

 

547,345,466.11

 

 

28

 

 

 

 

 

 

 

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Shipments

Dependent

0.00

0.00

Winters

Yes

0.28

0.09

Purchaser's Survey

Yes

0.72

0.09

Series Description

T-test 

P-value

F-test

Elasticity

Overall

F-test

Shipments

0.00

0.00

0.00

140.78

Winters

3.09

0.00

9.54

0.27

Purchaser's Survey

8.31

0.00

69.09

0.72

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

482.36

 

Durbin Watson(1)

1.44

 

BIC

483.69

 

Mean

13,693.68

 

Mean Absolute Percentage Error (MAPE)

7.89

%

Max

23,713.00

 

R-Square

91.55

%

Min

6,356.00

 

Adjusted R-Square

90.87

%

Sum Squared Deviation

547,345,466.11

 

Root Mean Square Error

1,285.52

 

Range

17,357.00

 

Theil

0.28

 

Ljung-Box

11.58

 

 

 

 

 

 

 

Method Statistics

Value

 

 

 

 

Method Selected

Multiple Regression

 

 

 

 

For the "shipments" data above the RMSE of the sales-force composite forecast was 1520 and for the Winters model the RMSE was 2461. Considering this piece of information, if you are determined to minimize historical forecast error, what model would you choose?

A) The sales-force composite model

B) The Winters model

C) The combined model

D) Unable to answer from data provided

26) Combined Forecast #3

Consider the data below that includes a time series of shipments of a commercial product. Two separate forecasts models were estimated for this data; one is a Holt-Winter's model labeled "winters" and the other is a sales-force composite judgmental model labeled "purchaser's survey."

Date

Shipments

Winters

Purchaser's Survey

Apr-2002

13,838.00

12,867.74

13,920.32

May-2002

15,137.00

15,020.45

15,052.82

Jun-2002

23,713.00

20,396.51

26,207.69

Jul-2002

17,141.00

13,705.67

17,237.59

Aug-2002

7,107.00

7,973.83

7,687.23

Sep-2002

9,225.00

10,588.46

9,788.06

Oct-2002

10,950.00

13,110.02

7,889.46

Nov-2002

14,752.00

14,920.97

14,679.10

Dec-2002

18,871.00

21,429.51

17,644.48

Jan-2003

11,329.00

14,836.31

10,436.45

Feb-2003

6,555.00

7,561.41

6,304.89

Mar-2003

9,335.00

9,956.32

9,354.44

Apr-2003

10,845.00

12,148.06

11,759.15

May-2003

15,185.00

14,665.88

14,971.57

Jun-2003

21,056.00

20,200.90

24,644.20

Jul-2003

13,509.00

13,344.02

14,224.17

Aug-2003

9,729.00

7,090.84

9,194.77

Sep-2003

13,454.00

9,606.14

12,141.25

Oct-2003

13,426.00

11,533.95

11,971.93

Nov-2003

17,792.00

14,714.76

17,654.14

Dec-2003

19,026.00

20,342.11

15,580.19

Jan-2004

9,432.00

13,296.42

9,961.98

Feb-2004

6,356.00

8,010.78

7,368.55

Mar-2004

12,893.00

10,944.75

11,286.25

Apr-2004

19,379.00

12,126.72

18,915.33

May-2004

14,542.00

15,732.13

14,056.06

Jun-2004

18,043.00

19,676.43

20,699.38

Jul-2004

10,803.00

11,747.86

12,892.97

Regression #1

Audit Trail — ANOVA Table (Multiple Regression Selected)

Source of Variation

SS

df

MS

SEE

Regression

 

502,795,011.49

 

 

2

 

 

251,397,505.75

 

 

 

 

Error

 

44,550,454.61

 

 

25

 

 

1,782,018.18

 

 

1,334.92

 

Total

 

547,345,466.11

 

 

27

 

 

 

 

 

 

 

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Shipments

Dependent

875.23

890.48

Winters

Yes

0.22

0.11

Purchaser's Survey

Yes

0.72

0.09

Series Description

T-test 

P-value

F-test

Elasticity

Overall

F-test

Shipments

0.98

0.34

0.97

141.07

Winters

2.09

0.05

4.35

0.22

Purchaser's Survey

8.25

0.00

68.11

0.72

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

481.30

 

Durbin Watson(1)

1.48

 

BIC

482.63

 

Mean

13,693.68

 

Mean Absolute Percentage Error (MAPE)

8.45

%

Max

23,713.00

 

R-Square

91.86

%

Min

6,356.00

 

Adjusted R-Square

91.21

%

Sum Squared Deviation

547,345,466.11

 

Root Mean Square Error

1,261.38

 

Range

17,357.00

 

Theil

0.27

 

Ljung-Box

9.64

 

 

 

 

 

 

 

Method Statistics

Value

 

 

 

 

Method Selected

Multiple Regression

 

 

 

 

Regression #2

Audit Trail — ANOVA Table (Multiple Regression Selected)

Source of Variation

SS

df

MS

SEE

Regression

 

501,073,510.18

 

 

2

 

 

250,536,755.09

 

 

 

 

Error

 

46,271,955.92

 

 

26

 

 

1,779,690.61

 

 

1,334.05

 

Total

 

547,345,466.11

 

 

28

 

 

 

 

 

 

 

Audit Trail — Coefficient Table (Multiple Regression Selected)

Series Description

Included

in Model

Coefficient

Standard

Error

Shipments

Dependent

0.00

0.00

Winters

Yes

0.28

0.09

Purchaser's Survey

Yes

0.72

0.09

Series Description

T-test 

P-value

F-test

Elasticity

Overall

F-test

Shipments

0.00

0.00

0.00

140.78

Winters

3.09

0.00

9.54

0.27

Purchaser's Survey

8.31

0.00

69.09

0.72

Audit Trail - Statistics

 

Accuracy Measures

Value

 

Forecast Statistics

Value

 

AIC

482.36

 

Durbin Watson(1)

1.44

 

BIC

483.69

 

Mean

13,693.68

 

Mean Absolute Percentage Error (MAPE)

7.89

%

Max

23,713.00

 

R-Square

91.55

%

Min

6,356.00

 

Adjusted R-Square

90.87

%

Sum Squared Deviation

547,345,466.11

 

Root Mean Square Error

1,285.52

 

Range

17,357.00

 

Theil

0.28

 

Ljung-Box

11.58

 

 

 

 

 

 

 

Method Statistics

Value

 

 

 

 

Method Selected

Multiple Regression

 

 

 

 

The information represented above for "shipments" "regression #2"

A) is used to determine bias.

B) is used to determine the appropriateness of combining the two separate models.

C) does not pass the Ljung-Box test.

D) suggests that an unequal weighting of the models could be optimal.

27) Suppose you are given 'n' predictions on test data by 'n' different models (M1, M2, …. Mn) respectively. Which of the following methods can be used to combine the predictions of these models?

1. Median

2. Product

3. Average

4. Weighted sum

5. Minimum and Maximum

6. Regression optimized weighting

A) 1, 3, and 4

B) 1, 3, and 6

C) 1, 3, 4, and 6

D) All of the options are correct.

28) How can we assign the weights to output of different models in an ensemble?

1. Use an algorithm to return the optimal weights

2. Choose the weights using cross validation

3. Give high weights to more accurate models

A) 1 and 2

B) 1 and 3

C) 2 and 3

D) All of the options are correct.

Document Information

Document Type:
DOCX
Chapter Number:
5
Created Date:
Aug 21, 2025
Chapter Name:
Chapter 5 Appendix - Combination Models
Author:
Barry Keating

Connected Book

Forecasting with Forecast X 7e Complete Test Bank

By Barry Keating

Test Bank General
View Product →

$24.99

100% satisfaction guarantee

Buy Full Test Bank

Benefits

Immediately available after payment
Answers are available after payment
ZIP file includes all related files
Files are in Word format (DOCX)
Check the description to see the contents of each ZIP file
We do not share your information with any third party